Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
Artificial intelligence (AI) has shown promise in detecting and characterizing musculoskeletal diseases from radiographs. However, most existing models remain task-specific, annotation-dependent, and limited in generalizability across diseases and anatomical regions. Although a generalizable foundation model trained on large-scale musculoskeletal radiographs is clinically needed, publicly available datasets remain limited in size and lack sufficient diversity to enable training across a wide range of musculoskeletal conditions and anatomical sites. Here, we present SKELEX, a large-scale foundation model for musculoskeletal radiographs, trained using self-supervised learning on 1.2 million diverse, condition-rich images. The model was evaluated on 12 downstream diagnostic tasks and generally outperformed baselines in fracture detection, osteoarthritis grading, and bone tumor classification. Furthermore, SKELEX demonstrated zero-shot abnormality localization, producing error maps that identified pathologic regions without task-specific training. Building on this capability, we developed an interpretable, region-guided model for predicting bone tumors, which maintained robust performance on independent external datasets and was deployed as a publicly accessible web application. Overall, SKELEX provides a scalable, label-efficient, and generalizable AI framework for musculoskeletal imaging, establishing a foundation for both clinical translation and data-efficient research in musculoskeletal radiology.
Time series forecasting plays a critical role in decision-making across many real-world applications. Unlike data in vision and language domains, time series data is inherently tied to the evolution of underlying processes and can only accumulate as real-world time progresses, limiting the effectiveness of scale-driven pretraining alone. This time-bound constraint poses a challenge for enabling large language models (LLMs) to acquire forecasting capability, as existing approaches primarily rely on representation-level alignment or inference-time temporal modules rather than explicitly teaching forecasting behavior to the LLM. We propose T-LLM, a temporal distillation framework that equips general-purpose LLMs with time series forecasting capability by transferring predictive behavior from a lightweight temporal teacher during training. The teacher combines trend modeling and frequency-domain analysis to provide structured temporal supervision, and is removed entirely at inference, leaving the LLM as the sole forecasting model. Experiments on benchmark datasets and infectious disease forecasting tasks demonstrate that T-LLM consistently outperforms existing LLM-based forecasting methods under full-shot, few-shot, and zero-shot settings, while enabling a simple and efficient deployment pipeline.
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
Electronic medical records (EMRs), particularly in neurology, are inherently heterogeneous, sparse, and noisy, which poses significant challenges for large language models (LLMs) in clinical diagnosis. In such settings, single-agent systems are vulnerable to self-reinforcing errors, as their predictions lack independent validation and can drift toward spurious conclusions. Although recent multi-agent frameworks attempt to mitigate this issue through collaborative reasoning, their interactions are often shallow and loosely structured, failing to reflect the rigorous, evidence-driven processes used by clinical experts. More fundamentally, existing approaches largely ignore the rich logical dependencies among diseases, such as mutual exclusivity, pathological compatibility, and diagnostic confusion. This limitation prevents them from ruling out clinically implausible hypotheses, even when sufficient evidence is available. To overcome these, we propose RE-MCDF, a relation-enhanced multi-expert clinical diagnosis framework. RE-MCDF introduces a generation--verification--revision closed-loop architecture that integrates three complementary components: (i) a primary expert that generates candidate diagnoses and supporting evidence, (ii) a laboratory expert that dynamically prioritizes heterogeneous clinical indicators, and (iii) a multi-relation awareness and evaluation expert group that explicitly enforces inter-disease logical constraints. Guided by a medical knowledge graph (MKG), the first two experts adaptively reweight EMR evidence, while the expert group validates and corrects candidate diagnoses to ensure logical consistency. Extensive experiments on the neurology subset of CMEMR (NEEMRs) and on our curated dataset (XMEMRs) demonstrate that RE-MCDF consistently outperforms state-of-the-art baselines in complex diagnostic scenarios.
Repertoire-level analysis of T cell receptors offers a biologically grounded signal for disease detection and immune monitoring, yet practical deployment is impeded by label sparsity, cohort heterogeneity, and the computational burden of adapting large encoders to new tasks. We introduce a framework that synthesizes compact task-specific parameterizations from a learned dictionary of prototypes conditioned on lightweight task descriptors derived from repertoire probes and pooled embedding statistics. This synthesis produces small adapter modules applied to a frozen pretrained backbone, enabling immediate adaptation to novel tasks with only a handful of support examples and without full model fine-tuning. The architecture preserves interpretability through motif-aware probes and a calibrated motif discovery pipeline that links predictive decisions to sequence-level signals. Together, these components yield a practical, sample-efficient, and interpretable pathway for translating repertoire-informed models into diverse clinical and research settings where labeled data are scarce and computational resources are constrained.
Parkinson's disease (PD) is a chronic and complex neurodegenerative disorder influenced by genetic, clinical, and lifestyle factors. Predicting this disease early is challenging because it depends on traditional diagnostic methods that face issues of subjectivity, which commonly delay diagnosis. Several objective analyses are currently in practice to help overcome the challenges of subjectivity; however, a proper explanation of these analyses is still lacking. While machine learning (ML) has demonstrated potential in supporting PD diagnosis, existing approaches often rely on subjective reports only and lack interpretability for individualized risk estimation. This study proposes SCOPE-PD, an explainable AI-based prediction framework, by integrating subjective and objective assessments to provide personalized health decisions. Subjective and objective clinical assessment data are collected from the Parkinson's Progression Markers Initiative (PPMI) study to construct a multimodal prediction framework. Several ML techniques are applied to these data, and the best ML model is selected to interpret the results. Model interpretability is examined using SHAP-based analysis. The Random Forest algorithm achieves the highest accuracy of 98.66 percent using combined features from both subjective and objective test data. Tremor, bradykinesia, and facial expression are identified as the top three contributing features from the MDS-UPDRS test in the prediction of PD.
Multimodal fusion has emerged as a promising paradigm for disease diagnosis and prognosis, integrating complementary information from heterogeneous data sources such as medical images, clinical records, and radiology reports. However, existing fusion methods process all available modalities through the network, either treating them equally or learning to assign different contribution weights, leaving a fundamental question unaddressed: for a given patient, should certain modalities be used at all? We present AdaFuse, an adaptive multimodal fusion framework that leverages reinforcement learning (RL) to learn patient-specific modality selection and fusion strategies for lung cancer risk prediction. AdaFuse formulates multimodal fusion as a sequential decision process, where the policy network iteratively decides whether to incorporate an additional modality or proceed to prediction based on the information already acquired. This sequential formulation enables the model to condition each selection on previously observed modalities and terminate early when sufficient information is available, rather than committing to a fixed subset upfront. We evaluate AdaFuse on the National Lung Screening Trial (NLST) dataset. Experimental results demonstrate that AdaFuse achieves the highest AUC (0.762) compared to the best single-modality baseline (0.732), the best fixed fusion strategy (0.759), and adaptive baselines including DynMM (0.754) and MoE (0.742), while using fewer FLOPs than all triple-modality methods. Our work demonstrates the potential of reinforcement learning for personalized multimodal fusion in medical imaging, representing a shift from uniform fusion strategies toward adaptive diagnostic pipelines that learn when to consult additional modalities and when existing information suffices for accurate prediction.
Vision foundation models trained on discretely sampled images achieve strong performance on classification benchmarks, yet whether their representations encode the continuous processes underlying their training data remains unclear. This question is especially pertinent in computational pathology, where we posit that models whose latent representations implicitly capture continuous disease progression may better reflect underlying biology, support more robust generalization, and enable quantitative analyses of features associated with disease transitions. Using diffusion pseudotime, a method developed to infer developmental trajectories from single-cell transcriptomics, we probe whether foundation models organize disease states along coherent progression directions in representation space. Across four cancer progressions and six models, we find that all pathology-specific models recover trajectory orderings significantly exceeding null baselines, with vision-only models achieving the highest fidelities $(τ> 0.78$ on CRC-Serrated). Model rankings by trajectory fidelity on reference diseases strongly predict few-shot classification performance on held-out diseases ($ρ= 0.92$), and exploratory analysis shows cell-type composition varies smoothly along inferred trajectories in patterns consistent with known stromal remodeling. Together, these results demonstrate that vision foundation models can implicitly learn to represent continuous processes from independent static observations, and that trajectory fidelity provides a complementary measure of representation quality beyond downstream performance. While demonstrated in pathology, this framework could be applied to other domains where continuous processes are observed through static snapshots.
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.